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Abstract 

There is an apparent connection between reinforcement learning and agency. In computer 

science entities controlled by reinforcement learning algorithms are standardly referred to as 

agents, and the mainstream view in the psychology and neuroscience of agency is that humans 

and other animals are reinforcement learners. This paper examines this connection, focusing on 

artificial reinforcement learning systems and working from the assumption that there are a range 

of forms of agency. Artificial reinforcement learning systems satisfy plausible conditions for 

minimal agency, and those which use models of the environment to perform forward search are 

capable of a form of agency which may reasonably be called action for reasons. 

 
1. Introduction 

Reinforcement learning (RL) is a branch of machine learning with an apparently intrinsic 

connection with agency. In their seminal textbook on the subject, Sutton and Barto (2018, p. 1) 

define reinforcement learning as, ‘learning what to do – how to map situations to actions – so as 

to maximize a numerical reward signal’. In the standard reinforcement learning framework the 

entity that is controlled by the RL algorithm, which moves through the real or virtual 

environment, is always referred to as an agent. This piece of terminology is only very weak 

evidence that RL systems really are agents, but it does prompt a philosophical question: what 

does RL have to do with agency? In this paper my aim is to make progress on this question. 

There are two possible directions from which this topic could be approached. One would 

focus on artificial intelligence, and ask: in what respects are artificial RL systems agent-like, or 

what aspects of agency do they display – if any – in virtue of their use of RL? This version would 

be timely because the DeepMind systems which have achieved superhuman performance in Go, 

chess, shogi and various computer games all worked by combining RL algorithms with multi-

layer artificial neural networks (Mnih et al. 2015, Silver et al. 2016, Silver et al. 2018, Schrittwieser 

et al. 2020). Deep RL systems have also begun to be used for some practical applications 

(Whittlestone et al. 2021). Alternatively, since the RL framework has become the dominant 

paradigm in the psychology and neuroscience of evaluative cognition and action selection 

(Schultz et al. 1997, Niv 2009, Dolan & Dayan 2013, Gershman & Daw 2017), one could ask 
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about the significance of RL for human and animal agency. Here the question would be: what 

does the apparent fact that humans and other animals engage in RL have to do with their 

agency? These two questions are entwined, but in this paper I will focus on the first. I will use 

ideas which have been developed in the context of theorising about human and animal agency, 

but AI will be my main target. 

Understanding agency in AI is important for several reasons. One reason is that goal-directed 

AI agents are more likely to exhibit unpredictable or power-seeking behaviour, which may make 

powerful systems especially dangerous (Omohundro 2008, Bostrom 2014). This thought has 

prompted interest in the nature of agency among AI safety researchers (e.g. Kenton et al. 2022). 

A second reason is that if artificial systems can be agents we will at some point confront 

problems of moral agency and responsibility in AI (Wallach & Allen 2008). A third is that agency 

may matter for moral standing in AI (Kagan 2019, Shulman & Bostrom 2021). However, I will 

focus directly on the relationship between reinforcement learning and agency, rather than 

addressing any of these topics. 

According to a traditional view in philosophy, which remains influential, there is an important 

form of agency which is distinctively human, sometimes called action for reasons. Accounts of 

this form of agency emphasise self-awareness, the ability to select principles to be followed in 

action, and the ability to conceive of reasons as such. Jamieson (2018) associates such accounts 

with the view that there is a discontinuity between human and non-human animal agency, and 

they certainly suggest that there are demanding requirements for paradigmatic agency. However, 

there is more to agency than just this form. Philosophers have also explored concepts of minimal 

and primitive agency (Barandiaran et al. 2009, Burge 2009), and forms of agency which humans 

share with other animals (Glock 2009, Sebo 2017, Jamieson 2018). Proponents of demanding 

accounts of action for reasons acknowledge that related forms of agency exist in children and 

other animals (Velleman 2000, Schlosser 2012). Korsgaard (2018) states a position of this kind in 

arguing that animals are agents because they engage in ‘representation-governed locomotion’, but 

humans are distinctively rational agents because we reflect on our motives and are aware of our 

actions as our own. It may be that there are levels of agency – perhaps overlapping and blending 

into one another – which depend on different levels of cognitive sophistication, such as those 

discussed by Dennett (1996), Bratman (2000) and Papineau (2001). If this is right, then forms of 

RL may play a role in distinguishing levels of agency. 

From the perspective that there are a variety of forms of agency, perhaps forming a hierarchy, 

it becomes possible to view apparently conflicting positions in the philosophy of action as 

accounts of conditions for different forms. For example, Velleman (2000) argues for a 
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demanding account of ‘autonomous action’, over an alternative belief-desire account, but also 

acknowledges that the belief-desire account may capture a phenomenon he calls ‘purposeful 

activity’. This matters for my purposes because I will argue that two forms of RL are respectively 

sufficient for two forms of agency, but I do not deny that there may be further important forms 

of agency for which the conditions are more demanding. This is not to say, however, that all 

accounts of forms of agency are equally valid. Some will be more successful than others in 

identifying joints in nature or phenomena which matter for further theoretical or practical 

purposes. I will also shortly argue that some accounts of minimal agency are too weak to 

delineate forms of agency at all, with the phenomena they describe perhaps better seen as 

preconditions for agency. 

Minimal agency is the first topic I will discuss, in sections 2 and 3. I will argue that it is 

possible for artificial systems to be agents with goals, in opposition to the view that only 

biological self-maintenance can give rise to the normativity which is necessary for agency. I will 

describe the ‘model-free’ form of RL and argue that it is sufficient for minimal agency. Then in 

sections 4 and 5 I will describe ‘model-based’ RL and argue that it is sufficient for action for 

reasons. The difference between model-free and model-based RL is that in the latter the system 

uses a transition model of its environment, which is a representation of the probabilities that 

actions will lead to particular outcomes when taken in given initial states, to select actions. This 

means that it represents facts which count in favour of or against possible actions and selects 

actions on the basis of these representations. 

 

2. Minimal agency 

I begin by discussing accounts of minimal agency. In this section I first criticise an account of 

minimal agency by Barandiaran et al. (2009) which makes it a primarily biological phenomenon, 

then present an alternative proposal by Dretske (1985, 1988, 1993, 1999). Dretske’s theory is 

more readily compatible with agency in artificial systems, and also does a better job than the bio-

agentic account of grounding the normativity of agency. However, Dretske’s theory is too weak 

– it attributes agency to systems which do not pursue goals through interaction with their 

environments – so I propose a revision to fix this problem. 

To be an agent, a system must engage in goal-directed interaction with an environment. This 

means that its interaction with the environment must be governed a norm, at least in the weak 

sense of a non-arbitrary standard of success or correctness. A system with a goal is subject to a 

norm because it can perform better or worse by producing outputs which are more or less 

conducive to that goal. However, having a goal is a specific form of norm-governance. Biological 
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sub-systems such as the heart and artifacts such as mousetraps have functions, so their activities 

are subject to norms, but they do not seem to be agents or to pursue goals. So two crucial tasks 

for a theory of minimal agency are explaining the sense in which the activities of minimal agents 

are governed by norms, and showing that they have goals rather than functions. 

Normativity in agency is a central concern of theories of bio-agency, which Meincke (2018, p. 

65) defines as ‘the intrinsically normative adaptive behaviour of … organisms, arising from their 

biological autonomy.’ In an example of a bio-agentic account, Barandiaran, Di Paolo and Rohde 

(2009) argue for three necessary and jointly sufficient conditions for ‘genuine’ agency, which they 

call individuality, asymmetry and normativity. The individuality condition is that there ‘must be a 

distinction between the system and its environment’ (p. 369), and Barandiaran et al. argue that 

this is not trivial, because in the case of artifacts the distinction between an object and its 

environment is drawn by observers, for their own convenience. Agents must ‘define’ their own 

individuality, which all living organisms do in virtue of their self-generating, self-maintaining 

character. The asymmetry condition is that an agent ‘systematically and repeatedly modulates its 

structural coupling with the environment’ (p. 372), meaning that the agent’s internal state must 

cause changes in the nature of the agent-environment interaction. The normativity condition is 

that an agent’s interaction with the environment must be regulated so as to meet some norm, 

and Barandiaran et al. insist that the norms in question must be determined by the agent’s ‘own 

viability conditions’ (p. 376). These conditions add up to an account of agency which is very 

liberal in some respects; Barandiaran et al. write that a bacterium performing chemotaxis is an 

agent, and plants also seem to satisfy their conditions. 

For Barandiaran et al., the normativity required for agency can only arise from self-

maintenance of the kind found in living organisms. They do not claim that this entails that 

artificial agency is impossible, but they do write that ‘systems that only satisfy constraints or 

norms imposed from outside should not be treated as models of agency’ and that agents’ actions 

must contribute to their self-maintenance (p. 381). Artificial RL systems typically optimise 

reward functions which are externally imposed and unrelated to their persistence, so their 

account is incompatible with agency in these systems. 

There are two problems with this view. First, there are many cases in which living organisms 

perform actions which do not promote their own self-maintenance, but instead contribute to 

reproduction or the fitness of their kin or group. The imperative for organisms to reproduce is 

externally imposed in that it is genetically inherited, yet behaviour taken towards this end is just 

as clearly agentic as towards any other (for one thing, it can call upon the full range of cognitive 

capacities associated with agency). So self-maintenance is not the only source of norms by which 
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the activities of living organisms are regulated. Second, the orthodox view in philosophy of 

biology is that traits of organisms can have functions in virtue of the effects for which they were 

selected (Garson 2019). This means that a compelling alternative account of the grounds of 

norms in biology is available. Having a biological function is not sufficient to be an agent, as the 

example of the heart illustrates, but if the normativity of function can be explained in terms of 

selective history – as opposed to self-maintenance – it is possible that this is also true of the 

normativity involved in agency. 

Dretske’s theory, in contrast, grounds normativity in etiology – although in learning, not 

selection – and is compatible with artificial agency. His proposal is that, for some behaviour b of 

type B to be an action, it must be the case that: 

o b is caused by an internal state r of type R; 

o states of type R carry information about a feature of the environment E; 

o and the system has learnt to produce B-behaviours when in R-states partly in virtue of 

the fact that R-states carry information about E.1 

This claim is helpfully illustrated by an example from Dretske (1999). Suppose that a bird 

refrains from eating a viceroy butterfly which lands near its perch, because it has previously eaten 

a similar-looking monarch butterfly which tasted bad. This behaviour would count as an action, 

because it would (presumably) be caused by a state which the bird’s brain enters when it 

encounters things with the appearance of monarch butterflies. This internal state would cause 

the behaviour partly because it has this correlation with the environment – it is because there 

was an actual monarch butterfly present on the earlier occasion that the bird experienced the bad 

taste, and therefore that a connection was established between the internal state and the form of 

behaviour it exhibits. This theory is less complex than it appears: it is just the claim that action is 

behaviour that the system has learnt to produce selectively in particular circumstances, presented 

in a way which reflects Dretske’s further concern with naturalising representation. 

According to Dretske, when these conditions are met states of type R are used as indicators 

of E. To say that they are used in this way is to go beyond the claim that they carry information 

about E. It means that these internal states are representations with correctness conditions; in 

the butterfly case the internal state misrepresents, because it is being used as an indicator of 

monarch butterflies, but is triggered by a viceroy. Dretske thinks of action as behaviour 

governed by thought, and takes this to mean that actions must be caused by internal 

 
1 This theory is described in Dretske (1999), which focuses specifically on what distinguishes agents from 
non-agents. In Explaining Behavior (1988), where he aims to account for the explanatory role of reasons, 
Dretske also describes how internal states playing a desire-like role can contribute to behaviour. So a 
more demanding account could be extracted from this work. 
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representations in virtue of their content. His theory is supposed to capture this idea because it 

requires that correlations between representations and the environment explain why those 

representations cause behaviours. In his terms, content is a ‘structuring cause’ of behaviour.2 

Dretske’s theory takes an attractive approach to grounding normativity and entails that some 

artificial systems are agents. However, it is too liberal because it does not capture the goal-

directed aspect of agency, focusing instead on the idea of actions as caused by representations in 

virtue of their content. I will now explain these three points in turn. 

Dretske’s approach to grounding normativity is a version of that developed by teleosemantic 

theorists, such as Millikan (1984). The core idea is that a feature of a system can come to have a 

function by being selectively retained or reproduced as a result of some activity that it performs 

or effect that it produces. On this view whether an entity has a function depends on whether its 

existence is explained, etiologically, by what it can do. This is an account of normativity (of the 

kind which is relevant here) because any entity with a function is subject to a standard of success 

or correctness derived from that function. The most familiar version of this etiological approach 

claims that natural selection gives rise to functions of biological traits which are selected for 

fitness-promoting effects, and this theory has been widely discussed, defended and refined (e.g. 

Garson 2019). Mossio et al. (2009) proposed a theory of biological function based on self-

maintenance, which Barandiaran et al. cite in support of their view, but Artiga and Martínez 

(2016) argue that this approach has no advantage over the etiological one. 

 Dretske’s view is that agency requires functions to be established by learning, as opposed to 

evolution. However, like evolution, learning is a process in which features of systems are 

selectively established and retained for their effects. In biological cases learning is responsible for 

many of the traits and behaviours that adapt organisms to their environments. The idea that 

learning can ground functions has recently been defended in detail by Shea (2018), who describes 

it as a process by which complex systems develop so as to produce outcomes robustly. 

Turning to the application of his theory to artificial systems, it is striking that Dretske argues 

in a series of papers (1985, 1993, 1999) that there can be no such thing as genuine artificial 

intelligence. This is because, in Dretske’s view, intelligence is agency and agency requires 

learning. Artifacts can easily be constructed which produce outputs under certain environmental 

conditions, in virtue of correlations between these conditions and internal states, but Dretske’s 

view is that in such cases the correlations do not explain the connections between internal states 

 
2 Hofmann and Schulte (2014) argue that Dretske’s theory does not succeed in explaining how the 
content of mental states can cause behaviour. But this is compatible with its providing an attractive 
account of a minimal form of agency. 
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and outputs in the right way. Artifacts’ dispositions are explained by the actions of their 

designers, not by their sensitivity to the environment. What this argument neglects is that 

learning is possible in artificial systems. Like learning in animals, machine learning involves 

endogenous change in response to feedback, which proceeds according to an externally-imposed 

learning algorithm and tends to improve performance by some standard. Human engineers 

exercise some control over this process, in some cases, by providing the inputs and feedback by 

which machine learning systems are trained. But humans also train animals, and this in no way 

entails that the animals are not learning. 

In fact, Dretske’s theory entails that some machine learning systems are agents. To illustrate 

this claim I will discuss a system which is not an agent; this example will then also show the flaw 

in Dretske’s scheme, and motivate my proposal. 

AlexNet (Krizhevsky et al. 2012) is an image classification system based on a deep 

convolutional neural network, trained by supervised learning. Its training worked in the 

following way: at each step it was given as input an image sampled from a labeled corpus of over 

one million; this input caused activation to flow through the network, leading to an output 

assigning probabilities to each of 1000 categories; then the correct label for the image was 

provided as feedback, with the network weights adjusted depending on the difference between 

the output and this feedback. This regime led AlexNet to take a form in which it would reliably 

produce outputs assigning the highest probability to the correct label in response to input images 

from a held-out portion of the corpus. 

AlexNet satisfies Dretske’s conditions because, after it has been trained, patterns of activation 

in the network cause outputs of particular types. These patterns of activation are also correlated 

with input types, and it is because the patterns are correlated with particular input types that, as a 

result of learning, they cause particular outputs. For example, learning will cause patterns of 

activation which are highly correlated with images of crowns to become causally linked to 

‘crown’ outputs. Provided that we think of input images as forming part of its environment, 

AlexNet therefore learns to produce outputs selectively in response to environmental features. 

This is a problem for Dretske’s theory because AlexNet does not seem to be an agent. It does 

acquire a function through its training – its function is to classify images – but it does not seem 

to pursue a goal. One telling point is that the inputs AlexNet receives in training are 

probabilistically independent of each other and of its outputs. In particular, AlexNet’s outputs 

do not affect its subsequent inputs. This means that AlexNet can only ever learn to produce the 

right output for each individual input, as opposed to learning how to pursue goals through 

interaction with its environment. The latter involves producing outputs because they will affect 
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subsequent inputs, making it possible to achieve goals through episodes of interaction. Dretske’s 

theory goes wrong because producing outputs in a representation-guided way is compatible with 

the form of behaviour exhibited by AlexNet as well as that which is characteristic of agency. 

I therefore propose that minimal agency requires learning to produce outputs selectively for 

their contributions to good performance over an episode of interaction with the environment. 

One way for an output to contribute to good performance is for it to be one step in a series by 

which some goal can be achieved. ‘Good performance’ here just means the kind of performance 

which tends to be selected for by the learning process. When systems undergo learning which is 

sensitive to the contributions of outputs to performance over episodes, and promotes 

performance of a particular kind, they come to pursue the goal of good performance through 

their outputs, and their activity can be evaluated according to whether it is conducive to this goal. 

So systems of this kind are subject to a specific kind of norm, which is distinctive of agency. 

They have goals as opposed to functions. I take this to be a way of developing the idea of goal-

directed interaction with which I began this section. 

For a biological or artificial system to satisfy this account of agency the way in which it learns 

must allow information about subsequent performance to influence the probability that an 

output will be repeated, under environmental conditions of a given kind. As I will explain, this 

can be done in various ways. However, the way in which AlexNet learns does not meet this 

description, because the feedback to AlexNet’s outputs only includes information about the 

correct response to the previous input. Updates concerning a given output are then completed 

before the next input is provided. In contrast, agents must learn in a way which is sensitive (at 

least indirectly) to input-output-input contingencies.  

Another way to put the idea that agents pursue goals is to say that they select outputs in a way 

which depends on the instrumental value of these outputs. Following Dretske, I take learning to 

be crucial to explaining how agents select actions, so my account of agency can be satisfied by a 

system which learns in a way which is sensitive to instrumental value. As I will explain in the 

next section, model-free RL systems fit this brief precisely. 

 

3. Model-free reinforcement learning and minimal agency 

Model-free reinforcement learning systems satisfy the conditions for minimal agency just 

proposed. In this section I give a brief introduction to reinforcement learning,3 focusing on 

aspects which are relevant to my arguments, then explain why this is so. 

 
3 For a more detailed introduction for philosophers, see Haas (2022). The canonical textbook in the field 
is Sutton & Barto (2018). 
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RL algorithms are methods by which systems can learn, from interaction with an 

environment, how to behave in that environment so as to achieve an objective. To aid the 

development of such algorithms researchers have adopted a standard way of modelling 

environments, as Markov decision processes (MDPs). MDPs have the following elements: a 

certain number, perhaps infinite, of possible states; a range of actions available to the system in 

each state; and a numerical range of possible levels of reward that the agent can receive.4 Time is 

modelled as passing in discrete steps, and at each time-step the state that the system enters and 

the reward that it receives depend solely but perhaps probabilistically on the previous state and 

the action selected. A transition function describes which new state the system will enter after 

performing each action, in each initial state, and a reward function describes how much reward it 

will receive.5 The system’s objective is to maximise the reward function, so there is a sense in 

which the objective is built into the environment. 

More precisely, the system’s objective is to maximise the amount of reward it receives over 

the entire episode of its interaction with the environment. This means that at each time-step, the 

immediate consequences of an action are less important than the long-run cumulative reward 

which can be expected to follow from it, which is called value. The value of an action can only be 

defined relative to assumptions about how the system will behave in subsequent states. Similarly, 

the value of a state can be defined as the expected long-run cumulative reward subsequent to 

being in that state, again relative to assumptions about future behaviour. A system’s policy is a 

function describing how it will behave in each possible state; actions and states have values 

relative to policies, and the aim of RL can be described as finding an optimal policy, where this 

means one that maximises cumulative reward. 

The terms which RL researchers use – especially the talk of actions and objectives, but to 

some extent also reward and value – are problematic for my purpose, because whether RL 

systems perform actions is the issue at hand. As I have mentioned, it is also standard to call these 

systems ‘agents’. I will use ‘outputs’ and ‘inputs’ rather than ‘actions’ and ‘states’ where it is 

worthwhile to be scrupulous, but continue to use the latter terms at some points where I expect 

this to aid understanding. We should also bear in mind that I have not yet established that RL 

systems pursue objectives; what is known is that they are designed (more or less successfully) to 

 
4 RL algorithms have also been developed for so-called ‘multi-armed bandit’ problems, in which the state 
does not change. Systems capable of solving these problems need not be agents, so I leave this branch of 
RL aside to focus on that concerned with MDPs. 
5 Researchers vary in whether they take the domain of the reward function to be states (in which case 
reward depends on which state the agent reaches when it performs an action) or state-action pairs (in 
which case reward depends on the initial state and the action selected). I adopt the former convention 
here. 
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modify their own input-output dispositions in a way that tends to increase the amount of reward 

they receive. 

I have also mentioned that there is a distinction between model-free and model-based RL. 

The difference is that model-based methods involve learning a representation, or model, of the 

transition function. Humans are thought to use both forms (Kool et al. 2018). I will discuss 

model-based algorithms in the next section; here I focus on the model-free form. 

In model-free RL, algorithms are designed to allow systems to learn action values. This makes 

action selection simple, because a system will maximise the reward function if it always chooses 

the action with the highest value, relative to the optimal policy, in the current state. In the course 

of learning the system lacks access to the optimal policy (or the action values for this policy, 

which entail it), but model-free RL systems use methods for ‘bootstrapping’ towards this ideal 

situation. These involve the system taking the actions which it estimates have the highest value, 

relative to its current estimate of the optimal policy, and gradually improving these estimates 

based on the reward it receives. For example, in an method called Q-learning the system starts 

with a random assignment of values to actions, and selects actions by either choosing the one 

with the highest value in the current state, or taking an action at random (which is useful to 

promote exploration). This causes it to enter a new state and receive a reward, at which point it 

calculates the difference between the previously estimated value of the action just taken, and the 

sum of the reward and the estimated value of the best action from the new state (this is called 

the temporal difference error). That is, it calculates: 

 

𝑅 + 𝛾𝑄(𝑆!, 𝐴!) − 𝑄(𝑆, 𝐴) 
 

where Q(S, A) is the estimated value of the action just taken in the previous state, Q(S', A') is the 

estimated value of the best action in the new state, R is the reward just received, and g is a 

discount factor. The system updates its estimate for Q(S, A) in the direction of the temporal 

difference error. Over time this process causes the system’s value estimates to become more 

influenced by its experience of reward in the environment, and hence to converge towards the 

true values for the optimal policy. 

According to my account, systems which use model-free RL will be agents if they learn to 

produce outputs selectively for their contribution to good performance over episodes of 

interaction. That this is the case can already be seen from the nature of the RL task and the fact 

that model-free systems can perform it successfully. The RL task is one in which good 

performance is defined over episodes, and the feedback to systems does not inform them of the 
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correct output for the input they have just received. Maximising immediate reward in response to 

each input does not amount to optimal performance; instead, which output it is best to produce 

in response to a given input depends on which further inputs will follow, and whether these 

make it possible to access the greatest quantities of reward. The fact that model-free RL systems 

can perform this task shows that they learn in a way which is sensitive to instrumental value. 

Their dispositions to produce outputs in response to inputs are derived from a process which 

gathers and employs information about subsequent rewards. 

How this works in the case of model-free RL is that the update rule is based on the temporal 

difference error, which includes a term for the estimated value of the best action in the new state 

(which is observed at the same time as the reward, before the update takes place). This makes it 

possible for the system to learn to produce an output not because it leads to high immediate 

reward, but because it leads to a state from which high rewards are expected, based on past 

experience. The learning process passes information about reward and its accessibility back along 

chains of possible actions, requiring only that these actions are tried enough times. 

Dretske’s conditions for agency are implicit in my account, and we can see that they are also 

satisfied. Model-free RL systems develop input-output dispositions through learning that depend 

on correlations between inputs as they represent them and states of the environment. These 

correlations are taken for granted in much RL research (the environment is assumed to be 

‘wholly observable’), but it is crucial for RL that systems’ internal states are correlated with the 

features of the environment that determine rewards and subsequent observations. 

Because model-free RL systems satisfy my account of agency, they each have and pursue a 

goal – specifically, the goal of maximising cumulative reward. What this means is that their input-

output dispositions are formed through a process which tends to bring about a certain kind of 

result (maximum reward) from episodes of interaction with the environment, and can be 

explained by the contributions they make to bringing this about. These facts ground norms on 

outputs: outputs are better if they make greater contributions to that kind of result (in roughly 

the same sense in which organs or artifacts can perform better or worse). This is the basic 

principle of goal-directed agency that an agent should prefer actions which are more conducive 

to its goal. My argument is that if an entity learns to produce outputs for their instrumental 

value, then that entity must be an agent pursuing a goal.6 

 

4. Model-based reinforcement learning and action for reasons 

 
6 For discussion of some further aspects of my account of minimal agency, see Butlin (2022). 
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In this section I turn to model-based RL. I begin by describing this form of RL and showing 

that systems using it are agents by my account. I then give an initial argument for the claim that 

model-based RL agents act for reasons, which I develop further in section 5. 

Model-based RL systems are those that learn the transition function. That is, they learn which 

new states are likely to follow from their actions, given the states in which those actions are 

taken. There are different ways in which transition models can be used to support the selection 

of rewarding actions, but one way is to combine the transition model with either a representation 

of the reward function, or a representation of the state value function, to calculate how much 

reward can be expected from possible sequences of actions starting from the current state. This 

process is called forward search. Model-based RL with forward search is used in AlphaGo (Silver et 

al. 2016), AlphaZero (Silver et al. 2018), and MuZero (Schrittwieser et al. 2020).7 These systems 

use neural networks to model transitions and learn value functions, but in simpler environments 

it is also possible to do this using lookup tables. From this point on I will use ‘model-based RL’ 

to refer only to systems which also use forward search.8 

In contrast to model-free RL, the model-based form does not involve making updates after 

each output which directly affect the likelihood of that output’s being repeated. Model-based RL 

does not involve storing action values or a representation of a policy which determines which 

action will be selected on a given occasion. Instead, at each time-step observations of the 

environment are used to update the model, and actions are subsequently selected by a process of 

inference involving the model. This means that to explain why a model-based system has 

produced an output it is necessary to appeal to the process of inference or reasoning that 

immediately precedes it, as well as learning. 

In model-based RL this combined process – of learning and reasoning – is sensitive to 

instrumental value and designed to promote good performance over episodes of interaction with 

the environment. The key point is simply that in forward search model-based RL systems look 

more than one step ahead. Rather than selecting the actions that yield the most immediate 

reward, they select those that promise the greatest cumulative reward over a longer period. If 

they learn state values rather than the reward function, their sensitivity to future reward extends 

beyond the furthest reach of their forward search. Model-free RL works by gradually passing 

 
7 Halina (2021) gives more detail on how forward search is used in AlphaGo, in the context of a 
discussion of the system’s creativity. She argues that forward search (in this case, Monte Carlo tree search) 
constitutes planning or ‘mental scenario building’. 
8 Thus excluding algorithms in the Dyna family (Sutton 1991), which learn a model of the environment 
but use it only to generate ‘simulated experiences’, which help to refine the action value function, which is 
in turn used to select actions. 
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information about reward backwards along sequences of possible actions, but model-based RL 

looks forward along such sequences to forecast future reward. 

This means that, if my arguments so far have been successful, model-based RL systems are 

agents and pursue the goal of maximising reward. I now want to argue that they act for reasons, 

because they represent facts that count in favour of their actions, given their goals, and they have 

a general-purpose capacity to select actions which are conducive to their goals, given the facts as 

they represent them. 

The facts in question are those described by the transition function. These are facts of the 

form: from state s1, if the agent performs action a, the probability that the next state will be s2 is 

x. A fact like this might count in favour of action a in s1 because s2 is a state from which a large 

quantity of reward is accessible and x is high. Whether this means that action a should be 

performed, however, depends on what other routes to reward are available from the initial state. 

These facts play the same role as those that are thought of as reasons for action in familiar cases. 

For example, the fact that it is likely to improve the taste (for me, given what I like) is a reason 

for me to add pepper to my soup. It does not follow that I have most reason to do this, though, 

because I may have stronger reasons to take other actions: it may be that chilli oil would be 

equally likely to cause a greater improvement. Facts about transitions do not count in favour of 

certain actions intrinsically, but only relative to the agent’s goals. A different agent could operate 

in an environment with the same transition function but a different reward function. But this is 

again as in the familiar case of reasons – the facts which are reasons for me to season my soup 

have their status as such only in virtue of the particular goals which I pursue. Model-based RL 

systems are defined by their capacity to learn and represent facts about transitions. 

Furthermore, model-based RL systems select actions in ways which respond to the extent to 

which those actions are favoured by the facts as they represent them. Forward search involves 

using representations of facts about transitions to calculate the expected returns from possible 

sequences of actions, and in the typical case systems would then perform the first action in the 

sequence with the highest expected return (deviations from this rule might sometimes be made 

to facilitate exploration). This is not just a matter of selecting actions which will tend to lead to 

later reward, but of selecting actions because they are favoured by specific combinations of facts 

about the environment, through a process which depends on representations of those facts. It is 

also notable that this method for selecting actions is entirely generally applicable, as a 

straightforward application of decision theory. MuZero learnt to play chess, Go, shogi and many 

Atari games using the same architecture and learning and action-selection algorithms, but it 
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could equally have learnt to achieve rewarding outcomes in other environments, provided that it 

was able to learn good models for these environments.9 

Another way to put this argument would be to say that model-based RL systems act for 

reasons because they engage in instrumental reasoning which issues in action. They select actions 

by reasoning about which of the actions available to them will be most conducive to their goals, 

given the current circumstances. This means that they act on representations of facts about 

transitions in ways which are, in their fundamentals, the same as the way in which humans act on 

instrumental beliefs. 

 

5. Action for reasons 

Model-based RL systems select actions in a way which is interestingly different from model-

free systems, and which bears notable similarities to the motivation of human actions by desires 

and instrumental beliefs. However, one might still question whether what model-based systems 

do constitutes action for reasons. Some philosophers would certainly object to this 

characterisation. I discuss this issue in this section, drawing on Mantel’s (2017, 2018a, 2018b) 

theory of action for reasons to explain my own views. My reason for focusing on Mantel’s theory 

is that it is particularly helpful for explaining my views, partly because I adopt the central element 

of her theory. This is the idea that to act for reasons is to exercise certain capacities, including 

the capacities to represent facts which count in favour of actions and to select the actions which 

these facts favour. The points on which I disagree with Mantel are also revealing about the 

substance of my views about agency in model-based RL. 

Before I discuss Mantel’s theory, I want to reiterate that I suspect that there are several forms 

of agency which are worth distinguishing for a variety of theoretical purposes. It is therefore 

plausible that there are forms which are more demanding than action for reasons as I understand 

it, for which model-based RL does not suffice, and other philosophers’ accounts of what they 

call ‘action for reasons’ may identify such forms. For example, Korsgaard’s (2008, 2018) view is 

that action for reasons requires conscious meta-cognitive reflection on one’s own motives. 

Model-based RL does not entail this kind of reflection. But my only disagreement with 

Korsgaard is that I claim that there is another, less-demanding form of agency which can also 

reasonably be called ‘action for reasons’, in addition to the one she describes. The same would 

go for many other views on this topic. 

 
9 MuZero was unable to achieve good performance on some Atari games, including Montezuma’s Revenge, 
which has proved particularly challenging for deep RL agents (Puigdomènech Badia et al. 2020); this is 
thought to be because it could not explore effectively enough, and therefore was unable to construct an 
adequate model of the game environment. 
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Mantel offers a theory of action for normative reasons in which the central idea is that this 

form of agency is a matter of manifesting a disposition or exercising a competence or capacity.10 

Her view is that competences and capacities are dispositions of a certain kind, so the theory can 

be stated in any of these terms. More specifically, her claim is that to act for a normative reason 

is to exercise a competence to act in the ways which are favoured by normative reasons. For 

example, when I add chilli oil to my soup I act for a reason because I exercise my competence to 

act in a way which is favoured by a fact about my present circumstances – the fact that the oil 

will make the soup taste better. For Mantel, it is important that I do not just have a ‘brute’ 

disposition to act in this one way in response to circumstances of this one type, but a 

competence to respond in the ways favoured by a variety or ‘family’ of different facts. This 

matters because it seems that an agent could have a non-rational disposition to do what is 

favoured by one normative reason, whereas more general or flexible responsiveness to reasons 

would show sensitivity to the ways in which they favour actions in context.11 

Mantel further claims that the competence to do what is favoured by reasons is made up of 

three sub-competences. These are (Mantel 2018a, p. 43): 

 

‘…the epistemic competence to represent the normative reasons of [some] family by descriptive 

beliefs, the volitional competence to be motivated by these descriptive beliefs to do what is 

favoured by the represented reasons, and the executional competence to execute these 

motivations.’ 

 

Mantel argues that each of these sub-competences is necessary, and that the unified exercise of 

all three is sufficient, for action for normative reasons. 

A key attraction of this theory is that it seems to address apparent counterexamples to the 

causal theory of action for reasons in a principled, independently plausible way. Any theory of 

action for reasons must identify the relation between the fact which is the agent’s reason for 

action and the action itself, in virtue of which the action is done for that reason. We can say that 

the fact in question is the fact that p. The causal theory makes the straightforward proposal that 

what is needed is that the agent believes that p, and this causes their action. The problem with 

this is that there are cases of deviant causal chains, in which an agent’s belief causes them to act 

only via some interceding force which disqualifies the action from being done for the reason in 

 
10 Accounts of action for reasons which appeal to dispositions, competences or capacities have also been 
proposed by Smith (2009), Hyman (2014) and Lord (2018). 
11 See Arpaly & Schroeder 2014, p. 60 ff. for a problem case involving an isolated behavioural disposition, 
which they attribute to Nagel (1970) and Korsgaard (2008). 
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question (Davidson 1973, Arpaly & Schroeder 2015). For example, Smith (2009) describes a case 

in which an actor is required to tremble as though nervous, and her belief that this is required 

causes her to become nervous, which causes her to tremble. 

One approach to addressing this problem is to add more detail to the account, in the form of 

extra causal steps which must be passed through as the belief causes the action. Goldman (1970, 

p. 62) writes that we should require that the belief causes the action ‘in a certain characteristic 

way’. But then new counterexamples can be devised, which introduce new ‘outside’ forces 

between the new steps (Bach 1978 both proposes a revision of this kind, and notes this 

problem). We might also worry about the theory becoming either disjunctive or chauvinistic, 

because presumably different possible rational agents act through different processes. A better 

solution, it seems, is to appeal to dispositions, competences or capacities to act in the ways which 

one’s beliefs favour, which are manifested or exercised in action for reasons. This works because 

to say that a system has a capacity to do something is roughly to say that the system has a way to 

do that thing. For the system to exercise the capacity is for it to do that thing in that way. So this 

approach allows us to cash out Goldman’s idea, without specifying the form which the process 

of rational action selection must take, by employing concepts which are of independent 

philosophical interest (and have been extensively analysed, in the case of dispositions). 

Turning now to the relationship between Mantel’s theory and my own views, I have argued 

that model-based RL systems act for reasons because they represent facts that count in favour of 

their actions, given their goals, and exercise a general-purpose capacity to select actions which 

are favoured by the facts as they represent them. Capacities to represent and act on action-

favouring facts are central to Mantel’s theory, and the claim that the exercise of such capacities 

constitutes action for reasons is what allows it to enjoy the advantage just described. However, 

not all model-based RL systems meet all of the requirements of Mantel’s theory, for reasons 

which are worth exploring. 

The first reason is that Mantel’s theory is expressed in terms of belief and motivation, and I 

have not attempted to justify the attribution of these forms of thought to artificial RL agents. 

However, my view is that a good account of action for reasons is possible without these 

concepts. To see this we can ask why Mantel requires the three sub-competences, rather than 

only the overarching competence to act in the ways favoured by normative reasons. 

The value of distinguishing the epistemic and volitional sub-competences, which Mantel does 

by appealing to belief, has two sources. First, it ensures that the account captures the basic 

Dretskean insight that for an agent to act for a reason it must act because it takes or identifies 

the world as being a certain way. Action for reasons requires descriptive intentional states. 
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Second, it helps the account to solve what Mantel (2018b) calls ‘Davidson’s challenge’, which is 

the problem of distinguishing the reasons for which an agent acts, when there are multiple 

reasons which count in favour of their action. The appeal to belief makes it possible, to a greater 

extent, to trace the path from particular reasons to actions. An appeal specifically to belief is not 

necessary for these functions, however, because a less specific requirement for descriptive 

representation would serve equally well. To use descriptive representations in instrumental 

reasoning which issues in action is to take the world to be a certain way, whether or not the 

representations amount to beliefs, and such representations are equally suitable for meeting 

Davidson’s challenge. 

Mantel’s distinction between volitional and executive sub-competences and appeal to 

motivation, in contrast, seems to be explained by features of human agency for which some 

artificial RL systems have no analogues. Mantel (2018a, p. 17) writes that she uses the term 

‘motivation’ in a broad sense, interchangeably with ‘desire’, and that intention is for her a form 

of motivation. It makes sense to employ these concepts in the human context because human 

actions are relatively loosely connected to some of the model-based practical reasoning which we 

engage in. Humans reason about how to act in advance, for situations which we expect to 

encounter; our agency is hierarchical, in the sense that we sometimes perform whole sequences 

of ‘lower-level’ actions guided by a single choice made at a higher level; and executing the actions 

we have selected is sometimes challenging. So volition and execution can be seen as distinct 

stages in the process. These three phenomena are all possible for artificial RL systems but absent 

in the most basic cases of model-based RL. Action for reasons is still possible in cases in which 

they are absent, however – someone might act for a reason in performing a very simple action, 

like pressing a button, in response to a situation which they did not anticipate. So I see no need 

for this distinction in the account. We can just as well think of action for reasons as involving 

two capacities – to represent action-favouring facts and to select the actions they favour – rather 

than three. 

Despite these points, many philosophers may still object that artificial RL systems lack mental 

states and that this disqualifies them from acting for reasons. In particular, such systems arguably 

lack desires or volitions, so while they may select outputs which are favoured in some sense by 

facts about their environments, they are very different from ‘real agents’. There is nothing that 

they want or care about. 

I agree that there are some model-based RL systems which lack desires. In the context of the 

claim that the human mind implements RL algorithms, empirically-informed accounts of desire 

have suggested that desires are representations of state values which we use when engaging in 
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model-based RL (Cushman & Paul 2022, Railton 2012, Butlin 2017). But this implies only that a 

role in model-based RL is necessary for desire, not that it is sufficient. Desires also have a 

phenomenological role, especially in connection with affective phenomenology, and human and 

animal desires are connected to our biological drives. Chang (2004) and Shaw (2021) appeal to 

these features in accounts of the significance of desire for action for reasons, and they are likely 

to be absent in many or all artificial RL systems. 

It may well be that the distinction between agents which have desires and agents which lack 

them – or some similar distinction – is a very important one. Once again, my assumption is that 

there are a variety of forms of agency which are significant in different ways. Some model-based 

RL systems are controlled by very simple programs and operate in very simple environments, so 

it is to be expected that model-based RL is not sufficient for some of the most important forms. 

However, the point that some artificial RL systems lack desires does not seem to me to 

undermine the arguments that I have made so far in this paper. RL systems in general pursue 

goals through their interaction with their environments, learning to produce outputs selectively 

for their instrumental value. This is sufficient grounds to attribute minimal agency. And model-

based systems go beyond this by learning facts which count in favour of actions, given their 

goals, and employing general-purpose methods to select the actions which these facts favour, so 

since they are agents, there is a substantive sense in which they act for reasons. 

A second respect in which model-based RL fails to meet the requirements of Mantel’s theory 

is that she offers it as an account of action for normative reasons, and has a demanding 

conception of reasons of this kind. She writes that a normative reason is ‘a fact that objectively 

favors an action given the right ethical theory’ (2018b, p. 208) and gives examples showing that 

on her conception facts can favour agents’ actions, given their goals, while not being normative 

reasons for action. One example involves a killer who shoots their victim a second time because 

they are still alive. The fact that the victim is still alive may be the ‘agent’s reason’ for shooting, 

she writes, but would not be a normative reason because it does not ‘objectively favour’ the 

action. She also develops her theory partly in an attempt to understand morally worthy actions, 

for which agents deserve credit (2018a). This aspect of Mantel’s views is significant because an 

artificial RL system might operate in a virtual environment in which none of its actions matter 

(including to itself). By Mantel’s standards, such a system might have no normative reasons for 

action, so it would not be capable of acting for such reasons. 

I differ from Mantel here because I am less interested in understanding agents’ sensitivity to 

facts which objectively favour actions, independently of their goals, and more interested in action 

for reasons more broadly construed. A broader construal is important because it allows us to 
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recognise the features in common between the action of Mantel’s killer, that of a person who 

acts for a reason in pursuing a morally neutral goal such as winning a judo bout, and that of an 

animal which acts for a reason when it forages in a particular location. One way to understand 

reasons in this sense is to draw on Finlay’s (2014) analysis of normative language, including the 

word ‘reason’. Simplifying somewhat, Finlay argues that the expression ‘a reason for s to f’ 

means an explanation why it is good, relative to some end, for s to f (ch. 4). In this sense there can be 

reasons relative to any end, worthy or otherwise. To put it another way, my interest is in reasons 

understood as facts that count in favour of actions, relative to goals. If all model-based RL 

systems have goals, it follows that they have reasons for action in this sense. 

In short, I agree with Mantel that action for reasons should be analysed in terms of exercises 

of capacities or competences, that agents must represent their reasons, and that the capacities in 

question must be sufficiently general. However, her view can be modified, while retaining its 

main advantages, by removing the references to belief and motivation and broadening the 

conception of normative reasons. This yields an analysis of action for reasons which is more 

inclusive but remains substantive. 

 

6. Conclusion 

Both model-free and model-based RL systems learn to produce outputs for their instrumental 

value. That is, they learn to exploit the effects that their outputs have on their environments, and 

thus on subsequent inputs, to achieve good performance over episodes of interaction. By 

learning to do this these systems come to pursue goals and to meet standards for minimal 

agency. Both model-free and model-based RL systems represent their immediate circumstances 

and store information which allows them to select reward-conducive actions, but model-based 

systems have the special feature that they model the transition function and use the 

representations making up this model in instrumental reasoning. This means that they represent 

and act on the basis of facts which count in favour of their actions, given their goals, and 

therefore that they act for reasons. 
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