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Abstract 

Cognitive scientists often describe the mind as constructing and using models of aspects of the 

environment, but it is not obvious what makes something a model, as opposed to a mere 

representation. The leading proposal among philosophers is that models are structural 

representations, and are therefore distinguished by their format. However, an alternative 

conception is suggested by recent work in artificial intelligence, on which models are 

distinguished by their content. This paper outlines the two conceptions, and argues for the 

content conception, against the standard philosophical view. 
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1. Introduction 

In cognitive science, the mind is often described as working by constructing, manipulating 

and exploiting models of the body and the environment. This idea was introduced by Craik 

(1943) and has become hugely influential.1 But what exactly is meant by ‘models’ in this context? 

What distinguishes the claim that the mind models entities with which it interacts, from the 

presumably weaker claim that the mind represents such entities? Recent philosophical work has 

linked the concept of a model to that of structural representation, often focusing on the 

hierarchical generative models of predictive processing (Gładziejewski 2016, Gładziejewski & 

Miłkowski 2017, Kiefer & Hohwy 2018, Williams & Colling 2018). This connection has also 

been made in older work, such as by Cummins (1989), Ryder (2004) and Ramsey (2007). So one 

possible view is that modelling is the use of specifically structural representations, rather than 

representations with some other format. In this paper my aim is to put forward an alternative 

view: I will argue that models should be distinguished from other representations by their 

content, not by their format. 

More precisely, my aim is not to argue that philosophers and cognitive scientists never use the 

term ‘model’ to mean ‘structural representation’, or that they would always be wrong to do so. 

Instead, I want to draw attention to two points. First, the phenomena that philosophers and 

cognitive scientists call ‘models’ are typically structural representations, but they also have content 

of a certain kind, which distinguishes them from other representations. The generative models of 

predictive processing, for example, have both of these features. This raises questions about the 

relationship between the features – for example, whether the use of a structural format is 

particularly apt for representations with content of this kind – and also about the different ways 

in which they facilitate cognition, which may be obscured by talk of models which is insensitive 

to the difference between the two features. Second, there are examples of representations used in 

algorithms of quite central importance in cognitive science, which are naturally and universally 

referred to as models, but which do not have a structural format. So having a structural format 

does not seem to be necessary for a representation to be a model. 

I also certainly do not wish to deny that there is an important and interesting distinction 

between structural representations and those with other formats. Indeed, my argument relies on 

this distinction. My substantive claim is that there is a further important and interesting way to 

                                                        
1 In addition to the examples I discuss below, the idea that the mind uses models has been prominent in 
theories of reasoning (Johnson-Laird 1983, 2006) and motor control (Wolpert et al. 1995, Grush 2004). 
Webb & Graziano (2015) invokes models in their theory of consciousness, and Danks (2014) argues that 
diverse cognitive processes are united in their reliance on graphical models. But these are merely a few 
prominent examples; cognitive scientists refer to models very frequently. 
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classify representations used in cognitive systems, which does not correspond exactly to the 

structural/non-structural distinction, but which captures part of what scientists intend when they 

speak of ‘models’, in a range of significant cases. 

One complication is that talk of models contributes to modern computational cognitive 

science in two ways (Eliasmith 2007). As well as claiming that the mind models the body and the 

environment, cognitive scientists construct models of the systems they study. They engage in 

‘model-based science’ (Godfrey-Smith 2006a) by, for instance, developing computer learning 

algorithms and testing their performance on cognitive tasks. There is an extensive literature on 

the role and nature of the models used by scientists of all disciplines (e.g. Giere 1988, Magnani & 

Nersessian 2002, Weisberg 2013), and this includes debate on the means by which scientists’ 

models represent their targets, in which structural accounts have taken a prominent place (Suárez 

2003). However, I must emphasise that my topic is not scientists’ models. My topic is the mental 

models which humans and animals are said to use for a wide variety of cognitive tasks.2 

This paper has three main parts. In the next section, I define structural representation and 

give more detail on the claim that modelling is the use of representations of this kind. In section 

3 I present the alternative, content-focused conception of the use of models in the 

accomplishment of cognitive tasks. Then in section 4 I argue against the structural representation 

view, using the example of a model-based reinforcement learning algorithm which may be 

implemented in simple computer programs.3 

 

2. The Format Conception 

In this and the following section I describe two possible conceptions of a cognitive model, 

which I call the ‘format’ and ‘content’ conceptions. This section presents the format conception, 

in three stages: first I clarify the notion of representational format; then I explain what is meant 

by ‘structural representation’; and finally, I state the format conception and summarise the 

reasons why philosophers have adopted it. 

 

2.1 Representational Format 

In claiming that models are distinguished by their content rather than their format, I am 

claiming that one dimension of variation among representations is implicated in this distinction, 

                                                        
2 Scientists’ models are important here in one way, which is that I will appeal to computer programs used 
in reinforcement learning research – which might be thought of as scientists’ models – in arguing against 
the conception of mental models as structural representations. I discuss this complication further in 
section 4. 
3 Note that the practice of calling these two kinds of reinforcement learning ‘model-based’ and ‘model-
free’ is entirely standard in the discipline – my use of these labels is not prejudicial. 
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rather than another. However, there may be some uncertainty about what I mean by the ‘format’ 

dimension, and clearing this up will also help to make clear how I understand the notion of 

structural representation. 

In my way of thinking about things, representations vary along at least three dimensions. The 

first is content, which is sufficiently familiar that I won’t say anything more to explicate it. The 

second is format, and the third is what I shall call ‘basis’. A representation’s format is the way in 

which its vehicle properties are used to perform its representational function. Maps, 

photographs, sentences and musical scores are said to employ different formats, and in each of 

these cases vehicle properties are used for representation in different ways. The basis of a 

representation is the set of properties of the system within which it is embedded that make it the 

case that it has a representational function, and that its vehicle properties are used to represent in 

a particular way. The basis of a representation might be, for example, a convention that governs 

its use, or the biological function of a system that employs it. 

To consider an example in slightly more detail, one philosophical debate which is explicitly 

about representational format concerns whether there is a proprietary format for perceptual 

representation (Quilty-Dunn forthcoming). Some contributors to this debate argue that 

perception has an iconic format, meaning that perceptual representations do not admit of 

canonical decompositions (Carey 2009, Burge 2010, Block 2014). That is, any part of a 

representation in iconic format is equally representational, as in a typical photograph. This 

contrasts with non-iconic representations such as sentences, which have parts that do represent 

(such as words), and others that don’t (such as part-words). Quilty-Dunn (2016) argues that at 

least some perceptual representations are not iconic, by arguing that objects are sometimes 

represented by discrete representational constituents, which behave more like words than like the 

parts of a photograph. 

This debate fits my definition of format, because it concerns different ways in which vehicle 

properties can be used to perform representational functions. If the iconic theory is correct, then 

in perception representational vehicles, instances of brain activity, are used in such a way that 

each of their parts plays equally representational roles. Perhaps any part of an instance of brain 

activity constituting a moment’s visual perception represents the distribution of colours over a 

region of the visual field. On the other hand, if Quilty-Dunn is right, then there are certain parts 

of the representational vehicles used in perception that represent objects, and are such that their 

proper parts do not represent anything at all. 

Representational basis should be distinguished from format, because representations can be 

similar in format and different in basis, or vice versa. Consider a weather map that represents 
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land-masses by scale line drawings, and forecast temperatures by coloured regions. Such a map is 

an iconic representation, so if the iconic theory is right it is similar in format to perceptual 

representations. These differ in basis, however, because what makes the weather map a 

representation, and grounds its format, is the conventions governing its use. Perceptual 

representations, meanwhile, have their basis in either biological functions established by natural 

selection, or something like Shea’s (2018) ‘task functions’. Conversely, if Quilty-Dunn 

(forthcoming) is right that perception uses a plurality of representational formats, then it is 

possible for representations with the same basis to differ in format. 

Two further points about format are important for my purposes. First, the concept of 

exploitable relations (Godfrey-Smith 2006b, Shea 2018) is sometimes invoked in connection with 

structural representation, and this is helpful in one way, and unhelpful in another. Shea (2018) 

argues that subpersonal mental representations can bear either of two exploitable relations to the 

phenomena they represent: they can either carry information about those phenomena, or 

correspond to them structurally. Representations that differ in which of these relations are 

actually exploited by cognitive systems consequently differ in format, because their vehicle 

properties are used for representational purposes in different ways. So this point is very helpful 

in distinguishing structural representations from others. But the idea can also be confusing, 

because there is room for argument about whether all representations work by exploiting 

exploitable relations between vehicles and the phenomena represented. In particular, this is less 

clear in the case of representations with a conventional basis. The upshot is that if a 

representation exploits an exploitable relation, such as structural correspondence to its target, 

this has consequences for its format; but it is clearer that all representations have a format than 

that they all take advantage of exploitable relations.4  

Second, there are many ways to classify representational formats. Classifications can be more 

or less fine-grained, and different schemes may give overlapping classifications, or perhaps even 

orthogonal ones. I take structural representation to be a broad class of formats, so some 

intuitively distinct formats (such as maps and photographs) may be brought together under this 

classification. 

 

 

                                                        
4 O’Brien and Opie (2004), following Von Eckardt (1993), suggest that representation can be ‘grounded’ 
by either resemblance, causation or convention. But this classification, which combines format and basis, 
is problematic because mere resemblance or causation is not sufficient for representation without a basis 
such as convention or biological function, and because some representations both exploit resemblance, 
and have a conventional basis. Hieroglyphs are one example among many. 
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2.2 Structural Representation 

Structural representations (henceforth SRs) are a species of representation defined by 

similarity in their formats. More specifically, SRs have the following two defining properties: 

 

i. Relations over parts or states of the representational vehicle are used to represent 

relations over parts or states of the represented phenomenon. 

ii. The relations over the vehicle are used in this way because there is a putative 

structural correspondence between them and the relations over the represented 

phenomenon. 

 

This definition draws on discussions of structural representation by Swoyer (1991), O’Brien and 

Opie (2004), Ramsey (2007), Shagrir (2012) and Shea (2014, 2018). Shea defines structural 

representation only in terms of the first of the two properties, but makes clear that he also takes 

it to require structural correspondence. O’Brien and Opie do not use the expression ‘structural 

representation’, but theorise about a form of representation that relies on structural 

correspondence, defined in terms of structure-preserving mappings, which is how I define this 

concept below. Swoyer and Shagrir both define structural representation in terms of structural 

correspondence, and Ramsey describes SRs as relying on structural similarity, correspondence or 

isomorphism. The point that the structural correspondence between the vehicle and the 

representated phenomenon is merely putative is rarely mentioned, but necessary because of the 

possibility of inaccurate SRs, where the correspondence fails. 

Following Shea and others, I define structural correspondence in terms of homomorphism, 

understood in the following way. 

 

Let RA be a relation over parts or states of A, the representational vehicle, and let RB be a 

relation over parts or states of B, the thing represented. Then f, a function from parts or 

states of A to parts or states of B, is a homomorphism with respect to these relations if 

and only if: for any pair a1 and a2, a1RAa2 « f(a1)RBf(a2). 

 

For a vehicle to bear a structural correspondence to a represented phenomenon is just for a 

homomorphism to exist from the former to the latter. Homomorphisms are abundant, so to say 

that structural representation requires the existence of a homomorphism from the vehicle to the 

represented phenomenon is a very weak constraint. When combined with the first condition on 

structural representation, however, the constraint becomes significantly stronger. 
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Maps are often given as examples of SRs (Shea 2014, Gładziejewski 2016), and indeed they 

satisfy the definition. For example, consider the famous map of the London Underground 

network. This map has certain privileged parts, the marks symbolising each station, which 

correspond in the obvious way to the stations themselves. A function taking each of these marks 

to the named station is a homomorphism with respect to some relations of particular salience on 

the map, and some corresponding ones of practical importance in the world. It maps the relation 

being connected by a line of a single colour over the marks for the stations, to the relation being connected 

by a single London Underground line over the stations themselves; and it also preserves the orders in 

which stations are thus connected. 

A crucial point for understanding the notion of structural representation is that for an entity 

to be an SR, a set of relations over its parts or states that structurally correspond to some 

relations over the parts or states of a further entity must be used to represent those relations. Many 

cases of structural correspondence are therefore not cases of representation at all. For example, 

there may be a very natural homomorphism between a set of 100 bricks arranged in offset rows 

in a wall, and 100 football fans sitting in similarly offset rows in a stadium, with spatial relations 

between the bricks corresponding to similar spatial relations between the fans, but the theory of 

structural representation does not entail that the bricks represent the fans. 

What’s more, not all representations (or collections of representations) that are homomorphic 

to the things they represent are SRs, because in many cases homomorphisms exist even though 

the relevant relations over the represented domain are not represented. Shea (2014, s. 3) 

illustrates this point with the case of the honeybee’s waggle dance, in which the angle of the 

dance corresponds to the direction of the source of nectar, and the number of waggles 

corresponds to its distance. There is a homomorphism between dances and locations, and this 

homomorphism determines the representational content of any given dance. But this may not be 

a case of SR, because for that to be the case, relations between dances would have to condition 

the behaviour of observer bees in ways that would indicate that they represent relations between 

the locations of nectar sources. For instance, bees might watch two dances, and use the relation 

between them to fly first to one nectar source, then directly to another, without going back to 

the hive. But if bees don’t do such things, merely using individual dances as guides to the 

location of single nectar sources, the relations between dances are not used in the way required 

for structural representation. 

For a representation to be an SR, then, the details of the way in which it is used are crucial. 

The system that uses it must be capable of behaving in ways that are sensitive to relations over 

the represented domain, in virtue of the correspondence between these and certain relations over 
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the representational vehicle. This sensitivity may, however, be subtle or indirect. If an organism 

uses some internal process as a dynamic model of the environment which predicts incoming 

sensory stimulation, this model may contribute directly only to perception. But by facilitating 

faster or more reliable responses to environmental contingencies, the model could affect the 

organism’s behaviour; and these effects on behaviour would constitute sensitivity to relations 

between features of the environment, such as the tendency for one kind of event to be followed 

by another. 

The final aspect of structural representation which I want to discuss concerns look-up tables. 

Representations of this form play an important role in the argument to come, and there are some 

subtleties in how the definition just given applies to them. It will be helpful to have an example 

in mind, so consider a table of this form, into which many of the facts represented by the 

London Underground map could be transcribed: 

 

Departure Station Destination Station Line Stops Direction 

Acton Town Aldgate East District 22 East 

Acton Town Alperton Piccadilly 4 West 

… … … … … 

Temple Westminster District 2 West 

… … … … … 

 

The table is in alphabetical order, and lists each pair of stations connected by a single line, which 

line connects them, and how many stops are required, in which direction. Intuitively this is an 

example of a way to re-represent much of the information in an SR in a non-structural format. 

But in fact matters are slightly more complicated; I will note three points about how the 

definition of an SR applies to this case, and to other look-up tables. 

First, the table certainly employs what might be called non-structural elements. It identifies 

stations and lines by their names, and this way of representing does not make use of structural 

correspondence. Furthermore, it even represents some worldly relations other than by relations 

over the vehicle: both the number of stops between stations, and the direction of travel between 

them, are represented by symbols rather than relations. The use of non-structural elements is 

common in artifactual SRs such as maps, especially to identify objects, and this should not 

prevent us from recognising the crucial role that structural correspondence may still play. Unless 

we find a good reason to do otherwise, we should count all representations that satisfy the two 

conditions above as SRs, even if they also employ non-structural elements. 
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Second, this look-up table does have one of the two defining features of SRs, because the 

vehicle relation being on the same row of the table is used to represent the worldly relation being 

connected by a single London Underground line. Something similar will also be true of many other look-

up tables. However, there is no structural correspondence between these two relations, because 

the function from station names on the table to stations themselves is not one-to-one, but only 

one token of each name on the table stands in the relevant vehicle relation to each other name. 

Going more slowly, let us apply the definition of a homomorphism given above to the present 

case in the following way: 

 

 Let: a1, … , an be token names on the table 

  b1, … , bm be stations on the London Underground network 

  RA be the relation being on the same row of the table 

  RB be the relation being on the same London Underground line. 

 

Then the function mapping station names on the table to the stations that they name is not a 

homomorphism with respect to these two relations, because it is not true that for any pair a1 and 

a2, a1RAa2 « f(a1)RBf(a2). Consider the first token of the name ‘Acton Town’, and the token of the 

name ‘Westminster’, on the fragment above. If these are a1 and a2 respectively, then f(a1)RBf(a2) is 

true, because Acton Town and Westminster are both on the District Line. But a1RAa2 is not true, 

because these two tokens do not appear on the same line of the table. So the look-up table as a 

whole is not an SR. Its structure does not correspond to the structure of the system it represents, 

because relations over that system are represented piecemeal. Where in the system represented 

each object stands in many relations to other objects, in the representational vehicle there are no 

parts that stand in the corresponding set of relations. 

This pattern is likely to be common where information is stored in look-up tables. Part of 

what defines a look-up table is that the rows and columns have representational significance, but 

there are few structures of relations that can be represented in a look-up table other than in the 

piecemeal way just described. 

Third, despite this, each row of the table we are considering is an SR, according to the 

definition. The function that maps each station name on the first row of the table to the 

corresponding stations is a homomorphism with respect to the two relations being on the same row 

and being on the same line. This shows that a composite representation made up of parts which are 

SRs will not always be an SR itself. It also shows that not all SRs make any very interesting use of 

structural correspondence. If each row on the table we considering were replaced by a sentence 
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of English, the same information would be represented with very little change in efficiency or 

accessibility. Yet English sentences are not SRs; for example, in the sentence ‘Acton Town is on 

the same line as Aldgate East’ the relation of being on the same line is represented by a part of 

the vehicle, not a relation over parts.5 There is a stark contrast between the rows of our table and 

SRs which do make significant use of structural correspondence, such as the London 

Underground map itself. It is thanks to its use of structural correspondence that this map stores 

and presents information in a highly efficient and accessible way. 

 

2.3 Arguments for the Format Conception 

Now that we have the notion of structural representation in hand, we are ready for a 

statement of the format conception. The format conception is the claim that cognitive models 

are structural representations. 

 

Format Conception: A cognitive model is a structural representation used in performing a 

cognitive task. 

 

Since we know what SRs are, it remains only to briefly consider arguments for the format 

conception. 

The format conception of cognitive models is motivated by at least three lines of thought. 

First, many artifacts which we refer to as ‘models’ are used as SRs. For instance, Ryder (2004) 

mentions dynamic models of the solar system, which can be used to answer questions about 

possible spatial relations between the planets. Swoyer (1991) mentions a model aeroplane used 

for wind-tunnel testing. This point certainly makes it natural to use the term ‘model’ to describe 

at least some SRs in cognitive systems. Second, it is sometimes argued that causal and 

informational theories of mental representation (also called ‘indicator’ or ‘detector’ theories) 

suffer from insuperable difficulties, which can be avoided if we explain representation in terms 

of exploitable structural correspondence (Ramsey 2007, Williams & Colling 2018). So the 

                                                        
5 Relations over the parts of English sentences do contribute to determining content; ‘John loves Mary’ 
means something different from ‘Mary loves John’. So there are composite representations which are not 
SRs, but which are such that relations between their parts contribute to determining content. Kiefer and 
Hohwy (2018) also make this point, in comparing theories of structural representation to functional role 
theories of mental content. In the case of sentences, it’s noteworthy that relations of concatenation do 
not generally represent worldly relations. For example, in the sentence ‘Alice runs’ the concatenation 
between ‘Alice’ and ‘runs’ does not represent a relation between Alice and the property of running. To 
say that it did would launch us on a version of Bradley’s regress (Bradley 1893): if it is necessary to 
represent relations between objects and properties, it must also be necessary to represent the relations 
between objects and those relations, and so on. 
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thought is that by showing that cognitive models are SRs, it is possible to defend their status as 

representations. And third, it has been argued that cognitive models of some specific kinds, 

especially the generative models implicated in the predictive processing theory of cognition, are 

in fact SRs (Gładziejewski 2016, Kiefer & Hohwy 2018; for the predictive processing theory see 

Clark 2013, 2016, Hohwy 2013). Gładziejewski’s argument for this claim works by comparing 

these models to cartographic maps, which are taken to be prototypical non-mental SRs. 

These arguments are persuasive, but they are not conclusive. The first and third arguments 

strongly suggest that models and structural representation are connected, but they do not show 

that an alternative conception of cognitive models could not be more illuminating; and the 

second argument relies on a highly contentious claim about the prospects of indicator theories. 

So I now turn to the content conception of cognitive models. 

 

3. The Content Conception 

The content conception builds on the work of Lake and colleagues (2017), who seem to rely 

on differences in representational content, rather than format, in drawing a distinction between 

what they call ‘pattern recognition’ and ‘model-building’ algorithms for cognitive tasks. Lake et 

al. argue that in order to construct human-like artifical intelligence we must develop algorithms 

of the latter kind (see also Tenenbaum et al. 2011, Garnelo et al. 2016). They suggest that only 

model-building cognisers can perform tasks with understanding, and apply their existing 

knowledge of the world effectively in learning to perform new tasks or adapting to changing 

environments. If they are correct, then the content conception of a model may contribute to 

distinguishing between truly intelligent artificial systems and programs which perform 

impressively on cognitive tasks only through brute force or clever tricks. In essence, Lake et al.’s 

distinction is between one group of algorithms which learn to proceed in a single step from 

input to output (the pattern recognition type), and another which constructs and employs 

structures which represent underlying features of the domain with which the system interacts 

(the model builders). This is intended to capture common features of two distinctions: between 

model-free and model-based reinforcement learning, and between discriminative and generative 

classifiers. 

I will discuss these two examples in turn, and argue that in both cases, the model-building 

algorithms employ representations with content which is apt for use in explaining the inputs they 

receive and for justifying outputs. In the two examples, the representations in question have 

more in common than just this: they also represent relations which make it possible to calculate 

the probabilities of states of the environment, and of forms of input given these states. But for 
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reasons I will explain further below, I think that specifying the content conception in terms of 

aptness for explanation and justification is more likely to give a fully general characterisation than 

any more direct account of the content involved. For the avoidance of doubt, my claim is not 

that the use of a cognitive model requires the capacity to give explanations or justifications, but only 

that it requires the use of representations with content that could contribute to explanations or 

justifications. So on this account what makes a representation a model will indeed be its content, 

not the cognitive functions for which the system in question can use it. 

In the rest of this section, I first discuss the two examples, then present the content 

conception, and draw out an important implication. 

 

3.1 Two Examples 

In model-based reinforcement learning (RL), agents learn to select rewarding actions by 

coming to represent two kinds of information about their environment. They learn about the 

values of possible outcomes, and about relations between actions and outcomes. To choose the 

most rewarding action in a given situation, agents using this system may use these 

representations to generate a decision tree, showing the outcomes accessible from their present 

situation by a single action, the outcomes accessible from each of those, and so on; and then to 

evaluate each possible course of action on the basis of the value of the sequence of outcomes it 

will bring about. In contrast, in model-free RL agents learn only about the levels of reward 

brought about by actions in given situations, without learning which outcomes result from these 

actions. In effect, they learn the values of actions, rather than of outcomes, and they do not learn 

about relations between actions and outcomes. Model-free algorithms learn directly what output 

should be produced (the action) in response to each input to the system (the situation); model-

based algorithms learn facts about the environment which allow them to reason about which 

action to perform. 

Model-free RL algorithms such as temporal difference learning can learn the long-run values 

of actions (Sutton & Barto forthcoming), thus avoiding the computational costs associated with 

generating and evaluating decision trees. But they are inflexible compared to model-based 

algorithms in the following sense: model-based algorithms can quickly adapt to small changes in 

outcome values or action-outcome contingencies, by updating the corresponding 

representations; but model-free algorithms must re-learn policies from scratch to accommodate 

such changes. As Lake and colleagues explain, a human video game player could immediately 

perform competently in a new version of a game with a different objective or pattern of rewards 

and punishments, but Mnih et al.’s (2015) deep neural network which achieved human-like 
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performance on a range of Atari games requires a great deal of retraining to cope with such 

changes (Rusu et al. 2016), because their system relies solely on model-free RL. 

This difference in flexibility and the ability to apply knowledge in new conditions is illustrated 

by the standard experimental methods for distinguishing model-based from model-free action 

selection. In one method, outcome devaluation (Balleine & Dickinson 1998), animals learn to 

perform an action, such as pressing a lever, for a reward, which is typically an unfamiliar food. 

The reward is then devalued, away from the setting in which the action has been learnt. For 

example, the food may be paired with an injection of a substance that causes gastric illness. The 

animals are then tested to see whether they resume performing the action in the original setting, 

without the reward being delivered. Continuing to perform the action is considered to be 

evidence of model-free RL, because this indicates that the action itself is represented as 

rewarding. Reduced performance is evidence of model-based RL, because it indicates knowledge 

that the action leads to the now-devalued reward. 

A second method, the two-step task (Gläscher et al. 2010, Lee et al. 2014) involves participants 

making two choices in sequence. Each choice leads to a subsequent state with a certain 

probability, and reward depends only on which state is reached after the second step. There are 

different ways to use tasks of this form to test for model-based control, but a simple one is to 

allow participants to explore the state space in the absence of reward first, then inform them 

about which states are rewarding, and introduce the rewards. Participants who perform above 

chance when rewards are first available must be using model-based RL, because no actions have 

previously been rewarded, so a model-free system would have learnt nothing (Gläscher et al. 

2010). 

There are two abstract features of model-based RL in virtue of which it may be said to use 

models, while model-free RL does not. First, model-based RL represents relations which model-

free RL does not, and which crucially go beyond the relations between inputs and suitable 

outputs that are most directly relevant to the task of action selection. Model-based RL represents 

how the environment will change over time, contingent on possible actions, and makes use of 

these representations to select actions. Model-free systems do represent current states of affairs, 

and the range of actions which are presently available, but they do not represent possible 

transitions between states of the environment, which are relations between such states. Model-

free systems represent only the expected levels of reward of actions in each possible state; which 

is to say that they represent only the suitability of available outputs for each possible input. 

Second, these relations allow the formation of expectations about environmental 

contingencies, and are apt to faciliate hypothetical reasoning, and to ground explanations of 
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inputs and justifications of outputs. Both model-based and model-free RL algorithms are good 

for returning representations of actions which are likely to be rewarding as outputs when fed 

representations of states of affairs as inputs. But model-based RL also has the resources to 

perform further related tasks. It employs representations which have the potential to be used to 

predict what will follow from either the current state of affairs, or some hypothetical alternative, 

given each of a range of possible actions. This information can be used to give non-trivial 

justifications of selected actions – model-free RL says only that the chosen action is the best 

available, whereas model-based RL says what is good about it. 

Turning now to the distinction between discriminative and generative classifiers (Lake et al. 

2017, Jebara 2004), a typical task in machine learning is to classify inputs, such as handwritten 

characters. In this context inputs are sometimes called ‘data’, and outputs are ‘labels’. 

Discriminative classifiers are those that work by learning and applying a representation of the 

probability distribution of labels given data. These representations allow them to perform 

classification tasks directly; given a particular handwritten numerical character, the system will 

read off from the distribution the probabilities that the correct label for this shape is 0, 1, 2, … 

or 9, and can simply pick the label with the highest probability. Generative classifiers learn the 

distribution of data given labels, and the prior probabilities of labels, which enables them to 

perform the task thanks to Bayes’ rule. Compared to discriminative algorithms, they work the 

‘other way around’; they attempt to match the data to representations of likely shapes 

corresponding to each character. In a sense, a generative algorithm for classifying handwritten 

characters relies on knowledge about what each character is like, rather than knowledge about 

which shapes constitute which characters. 

As I mentioned above, generative models are central to the predictive processing theory of 

cognition (Hohwy 2013, Clark 2013, 2016). As it applies to perception, this theory claims that we 

perceive the world through an ongoing process of hypothesis-formation and –testing. The way 

that I represent the world as being at time t causes my perceptual system to represent a 

probability distribution over ways the world might be at time t+1, from which a hypothesis is 

formed. This hypothesis predicts that I will undergo certain sensory stimulation at t+1, and this 

prediction can be used to test and revise the hypothesis, until one is found which minimises 

prediction error. In order to perform these steps, the perceptual system must employ a 

generative model. It requires representations of the probabilities of forms of sensory stimulation 

(the input to the system) given hypotheses about how things are (the output), and also of the 

causal and/or informational relations between states of the world at successive times or in 

neighbouring locations. 
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Generative classification algorithms are therefore distinguished from discriminative 

algorithms by the same two abstract features that distinguish model-based from model-free RL, 

although it is the second that defines the generative-discriminative distinction. First, in some 

important cases generative algorithms represent relations which are not represented by 

discriminative algorithms. As just described, a prediction error minimisation algorithm for 

perception will use a representation of relations between successive states to generate hypotheses 

concerning incoming stimuli; without this knowledge far too many hypotheses would have to be 

tested for the system to perform the task effectively. In terms of data and labels, this 

representation of relations provides the prior probabilities of labels. 

Second, unlike discriminative algorithms, which proceed directly from input to output, 

generative models represent features of the task domain that explain the data. These features 

include both relations between hidden variables, and the typical sensible qualities of the kinds 

which the system aims to identify. If human perceptual systems use generative models, these 

represent relations that have the potential to explain why we receive the sensory stimulation we 

do; for example, I may represent that a goal has just been scored, that goal-scoring tends to cause 

cheering, and that cheering sounds a certain way, and these facts will together explain the sounds 

I am currently hearing. The same aspects of the representational content of generative models 

allow the formation of expectations about stimuli, and are apt to make hypothetical reasoning 

possible. 

 

3.2 Formulating the Content Conception 

Model-based RL algorithms and generative classifiers have in common that, unlike their 

respective alternatives, they represent features of task domains which are capable of explaining 

their inputs or justifying their outputs. Model-based RL algorithms represent causal relationships 

between states, actions, and subsequent states, and these have the potential to contribute both to 

explaining why agents find themselves in the states they do, and justifying their chosen actions. 

Generative classifiers represent the probabilities of data given labels, and these representations 

can contribute to explaining why the data they receive take the forms they do. Generative 

models in predictive processing, moreover, represent causal or informational relations between 

successive states, which can contribute further to explaining sensory stimulation. 

These features distinguish model-building from pattern recognition. So the content 

conception of a cognitive model is as follows: 
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Content conception: A cognitive model is a representation used in performing a cognitive 

task, which represents features of a task domain which are apt to explain inputs to the 

cognitive system and/or justify its outputs. 

 

As Lake et al. put it, ‘cognition is about using… models to understand the world, to explain what 

we see, to imagine what could have happened that didn’t, or what could be true but isn’t, and 

then planning actions to make it so’ (p. 2). 

A potential objection to this account is that it offers quite an indirect characterisation of the 

kind of content that distinguishes cognitive models. Instead of saying which features of the task 

domain models represent, it says only that they represent features which are apt for further tasks. 

Before I give my response to this objection, it will be helpful to note an important implication of 

the account. 

The implication is that cognitive models do not have their status as such outright, but only in 

relation to particular tasks for which they are used; many representations are models relative to 

some task, but not to others. One example of this comes from the theory of forward models 

used in motor control (Wolpert et al. 1995, Grush 2004). Grush describes sub-systems of the 

motor control system, which he calls ‘emulators’, which take efference copies of motor 

commands as input, and produce representations of likely sensory feedback as outputs (I will use 

Grush’s term to refer to these sub-systems, and the term ‘forward model’ for the representations 

they employ). He explains that one function of emulators is to allow motor commands to be 

corrected more rapidly than if real sensory feedback was required. He further explains that 

emulators might use either associatively-learnt look-up tables representing motor command-

sensory feedback pairs, or more sophisticated ‘articulated models’, with parts that correspond to 

at least some of the parts of the musculoskeletal system itself, and generate representations of 

likely feedback by simulating the interaction of these parts. We can focus on the unarticulated 

case, and consider whether a forward model that consists of command-feedback pairs is a model 

at all, by the standards of the content conception. 

If we take the task to be motor control, the answer is ‘yes’. The inputs to the motor control 

system specify goal behaviours, and the task of the system is to produce sequences of motor 

commands which will generate behaviours matching these specifications. Relative to this task, 

the unarticulated forward model is a model, because the production of a particular motor 

command may be justified by the fact that the previous command is likely to cause a certain 

form of sensory feedback, in combination with facts about the current goal behaviour. If an 

agent is trying to post a card through a slot, and the forward model entails that the card will 
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move towards a position a little to the left of the slot, this justifies a new motor command to 

move the card to the right. However, relative to the emulator’s task, the unarticulated forward 

model is, despite its name, not a model at all. The emulator’s task is to take motor commands as 

input and produce representations of likely sensory feedback as output, and the representation in 

question links these inputs and outputs in a single step. Relative to this task, the forward model 

is just like the action value representations in model-free RL, or the representations of the 

distribution of labels given data in discriminative classifiers. In contrast, the articulated forward 

model that Grush suggests would count as a model relative to both tasks. 

I now return to the objection that the content conception characterises models indirectly. The 

points just raised about task-relativity illustrate the difficulty of giving an alternative, more direct 

account of the kind of content that characterises models. To start with, consider the proposal 

that what characterises models is that they represent probabilistic relations between world states; 

this is an obvious common feature of the models in both model-based RL and predictive 

processing. This characterisation is problematic, because as in the case of motor control, the 

systems for which representations of this form are models may have sub-systems relative to 

which they are not models. For example, model-based RL systems include sub-systems with the 

function of taking representations of state-action pairs as inputs, and providing representations 

of likely outcomes as outputs. Relative to this function, some representations of relations 

between world states may not be models. Note that this is an implication not just of the content 

conception as stated, but also of the first-pass account of pattern recognition/model-free 

algorithms, which described them as those that link inputs and outputs in a single step. 

A different possible alternative would be to characterise models as representations that link 

features other than the inputs and outputs of the systems concerned. This account has difficulty 

with model-free RL, however, because algorithms of this type do typically represent the levels of 

reward associated with each state-action pair, as opposed to merely maintaining representations 

of which action should be performed in each state. The content conception as stated does a 

better job of accommodating this example, because actions cannot be justified by saying that 

they are rewarding to a particular degree, or more rewarding than alternatives. In this context, to 

say that a chosen action was rewarding gives no new information to justify the choice. So I 

suggest that the content conception as stated offers the most promising way to capture Lake et 

al.’s insight. 
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4. An Argument Against the Format Conception 

In this section I argue against the format conception of cognitive models by reference to 

Dyna, a simple model-based RL algorithm for ordinary computers (Sutton 1991). I claim that 

Dyna uses a model, but does not use structural representation. So Dyna constitutes a 

counterexample to the format conception: it shows that there are models which are not SRs. 

Before I get into the argument, a comment on methodology. Earlier I distinguished cognitive 

models, which are my topic in this essay, from scientists’ models of the phenomena they study. 

A possible concern about my argument is that Dyna and similar programs are scientists’ models 

of cognitive systems, as opposed to cognitive systems themselves. Perhaps a mere scientists’ 

model of model-based RL need not use a model itself. This objection is ill-founded, however, 

because there is no reason to deny that Dyna actually undergoes reinforcement learning. My 

method is therefore not unlike some scientists’ use of models; I use a particularly simple example 

of the phenomenon I am interested in, in order to see what is essential to it. 

Dyna is an algorithm for learning to exploit sources of reward in relatively simple virtual 

environments. These environments generate finite Markov decision problems (MDPs), which the 

algorithms must solve (Sutton & Barto forthcoming). In an MDP time proceeds in discrete 

steps, and at each time-step the agent finds itself in an identifiable state, and must select an 

action. At the next time-step, perhaps partly as a consequence of its action, the agent will find 

itself in a further state, and will receive a numerical reward. Then it must choose a further action. 

Transitions between states may be probabilistic, but the probabilities depend only on the 

previous state and the action selected. In finite MDPs, there are only finitely many possible 

states, actions and levels of reward. 

In small finite environments, reinforcement learning researchers have used look-up tables to 

represent what is learnt in both model-free and model-based algorithms. This point is made clear 

in works such as Kuvayev & Sutton (1996) and Boyan & Moore (1995), which discuss the 

problem of extending algorithms for finite MDPs to ones in which there is continuous variability 

in states and actions. This is a crucial point, because as I have argued, look-up tables are not 

usually SRs. 

In particular, the Dyna architecture maintains three look-up tables. One represents the long-

run values associated with states, which depend on the values of likely subsequent states. A 

second represents the next states and rewards that follow from each state-action pair; this is 

referred to as the ‘world model’ (Sutton 1991). And the third represents a policy – a set of rules 

concerning what to do in each state, which is used to select actions. The algorithm causes the 

world model to be updated from the agent’s experience of the environment, and the policy and 
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record of long-run state values are updated both by ‘real’ experience, and ‘simulated’ experiences 

generated by the world model. The model is therefore used for planning, understood as updating 

the policy in advance of action. 

To see that the world model in Dyna is not an SR, we can apply the argument used in section 

2.2 to show that look-up tables do not usually bear a structural correspondence to the 

phenomena they represent. The key point is that because each possible state will be represented 

by multiple entries in the world model, there is no homomorphism between this representation 

and the causal structure of the virtual environment. 

For example, consider the fragment of a possible world model shown below. In this table, the 

presence of a given state-symbol in the right hand column represents that the corresponding 

state is caused by the performance of action A1 in the state represented by the symbols on the 

same row in the left-hand column. It may be suggested, then, that the relation over parts of the 

table: being to the right on the same row is used to represent the relation: causation via A1 in the virtual 

environment. 

 

Initial State Resulting State Under A1 

S1 S2 

S2 S3 

S3 S4 

S4 S2 

 

If we define a function that takes symbols in the table to the corresponding states of the virtual 

environment, however, we can see that this will not be a homomorphism with respect to these 

two relations. For the function to be a homomorphism, it would have to be the case that a given 

state symbol is to the right on the same row as another if and only if their corresponding states 

are linked by causation via A1 in the virtual environment. This is not the case, because the ‘S1’ on 

the first row and the ‘S2’ on the last row are such that their corresponding states are linked by 

causation via A1, but they themselves are not linked by the relation being to the right on the same row. 

Similar points will hold for world models for almost every possible environment. 

As we also saw in section 2.2, if each row of a look-up table is considered to be a separate 

representation, these do satisfy the definition of an SR. But this hardly grounds on which to 

defend the format conception, because the point remains that the look-up table – the means by 

which the causal structure of the environment is represented – does not exploit any 
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correspondence with this structure. Its parts correspond in structure to parts of the 

environment, but only when such small parts are considered that this is near-trivial. 

The upshot of these considerations is that Dyna does not use structural representation. With 

this point in hand, all we need to show that the format conception of cognitive models is 

mistaken is that Dyna uses such a model. I take the account of the content conception in section 

3 to support this claim, because it shows how the distinction between model-based and model-

free RL can be assimilated to that between generative and discriminative classifiers; this indicates 

that the term ‘model’ is not used idiosyncratically by RL researchers. So I conclude that having a 

structural format is not necessary for an representation to be a cognitive model. 

 

5. Conclusion 

Philosophers have often connected the concept of a cognitive model to that of structural 

representation, suggesting that what it is for a representation used in a cognitive process to be a 

model is for it to be an SR. I have presented an alternative conception, according to which 

models are distinguished by their representational content, not their format. Following Lake et 

al., this conception emphasises connections between model-building, expectation, explanation 

and justification. I have also argued that having a structural format is not necessary for a 

representation to be a model. 

However, this does not mean that there are no important connections between the 

phenomena of structural representation and the use of models of task domains by cognitive 

systems. It could be that the use of structural representation is sufficient for modelling – 

although one reason to doubt this is that discriminative classifiers may use iconic (and hence 

structural) formats in representing their inputs. This point deserves further investigation. Even if 

SR is neither necessary nor sufficient for modelling, it could still be the case that there is a great 

deal of overlap between these categories, for deep reasons, perhaps to do with surrogative 

reasoning (Swoyer 1991). Nonetheless, theorists should pay more attention to content, and 

perhaps less to format, in seeking to understand cognitive models. 
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